Np mrd loader

Record Information
Version1.0
Created at2022-09-03 08:48:03 UTC
Updated at2022-09-03 08:48:03 UTC
NP-MRD IDNP0172029
Secondary Accession NumbersNone
Natural Product Identification
Common Name(1s,2s,4s,7r,9r,11s,13r,14s,15r,16s,17r)-15-(acetyloxy)-4,14-dihydroxy-2,14,17-trimethyl-3-oxo-11-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-oxatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadecan-16-yl 2h-1,3-benzodioxole-5-carboxylate
DescriptionJavanicinoside H belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. (1s,2s,4s,7r,9r,11s,13r,14s,15r,16s,17r)-15-(acetyloxy)-4,14-dihydroxy-2,14,17-trimethyl-3-oxo-11-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-oxatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadecan-16-yl 2h-1,3-benzodioxole-5-carboxylate is found in Picrasma javanica. It was first documented in 2022 (PMID: 36057363). Based on a literature review a significant number of articles have been published on Javanicinoside H (PMID: 36057352) (PMID: 36057303) (PMID: 36057301) (PMID: 36057249) (PMID: 36057012) (PMID: 36057226).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC35H46O16
Average Mass722.7370 Da
Monoisotopic Mass722.27859 Da
IUPAC Name(1S,2S,4S,7R,9R,11S,13R,14S,15R,16S,17R)-15-(acetyloxy)-4,14-dihydroxy-2,14,17-trimethyl-3-oxo-11-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-oxatetracyclo[7.7.1.0^{2,7}.0^{13,17}]heptadecan-16-yl 2H-1,3-benzodioxole-5-carboxylate
Traditional Name(1S,2S,4S,7R,9R,11S,13R,14S,15R,16S,17R)-15-(acetyloxy)-4,14-dihydroxy-2,14,17-trimethyl-3-oxo-11-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-oxatetracyclo[7.7.1.0^{2,7}.0^{13,17}]heptadecan-16-yl 2H-1,3-benzodioxole-5-carboxylate
CAS Registry NumberNot Available
SMILES
CC(=O)O[C@@H]1[C@@H](OC(=O)C2=CC=C3OCOC3=C2)[C@H]2[C@@]3(C)[C@@H](C[C@H]4CC[C@H](O)C(=O)[C@]24C)O[C@H](C[C@H]3[C@]1(C)O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O
InChI Identifier
InChI=1S/C35H46O16/c1-14(37)47-30-27(51-31(43)15-5-8-18-19(9-15)46-13-45-18)28-33(2)16(6-7-17(38)29(33)42)10-22-34(28,3)21(35(30,4)44)11-23(49-22)50-32-26(41)25(40)24(39)20(12-36)48-32/h5,8-9,16-17,20-28,30,32,36,38-41,44H,6-7,10-13H2,1-4H3/t16-,17+,20-,21-,22-,23+,24-,25+,26-,27+,28-,30-,32+,33+,34-,35+/m1/s1
InChI KeyOWMQOHYLQGALRH-NZFPOBKMSA-N
Experimental Spectra
Not Available
Predicted Spectra
Spectrum TypeDescriptionDepositor IDDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 25 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 252 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 101 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 126 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 151 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 176 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 201 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 226 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Picrasma javanicaLOTUS Database
Chemical Taxonomy
Description Belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit.
KingdomOrganic compounds
Super ClassPhenylpropanoids and polyketides
ClassTannins
Sub ClassHydrolyzable tannins
Direct ParentHydrolyzable tannins
Alternative Parents
Substituents
  • Hydrolyzable tannin
  • Quassinoid
  • Naphthopyran
  • Hexose monosaccharide
  • Glycosyl compound
  • O-glycosyl compound
  • Naphthalene
  • Benzodioxole
  • Dicarboxylic acid or derivatives
  • Benzenoid
  • Monosaccharide
  • Oxane
  • Pyran
  • Cyclic alcohol
  • Tertiary alcohol
  • Carboxylic acid ester
  • Secondary alcohol
  • Ketone
  • Polyol
  • Oxacycle
  • Carboxylic acid derivative
  • Acetal
  • Organoheterocyclic compound
  • Organic oxide
  • Organooxygen compound
  • Primary alcohol
  • Hydrocarbon derivative
  • Carbonyl group
  • Alcohol
  • Organic oxygen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP0.49ALOGPS
logP0.05ChemAxon
logS-2.6ALOGPS
pKa (Strongest Acidic)12.17ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count14ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area237.2 ŲChemAxon
Rotatable Bond Count8ChemAxon
Refractivity167.99 m³·mol⁻¹ChemAxon
Polarizability71.66 ųChemAxon
Number of Rings7ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDC00058548
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound101618825
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. de Oliveira ACV, de Morais FAP, Campanholi KDSS, Bidoia DL, Balbinot RB, Nakamura CV, Caetano W, Hioka N, Monteiro ODS, da Rocha CQ, Goncalves RS: Melanoma-targeted photodynamic therapy based on hypericin-loaded multifunctional P123-spermine/folate micelles. Photodiagnosis Photodyn Ther. 2022 Aug 31;40:103103. doi: 10.1016/j.pdpdt.2022.103103. [PubMed:36057363 ]
  2. Singh S, Bharadwaj T, Verma D, Dutta K: Valorization of phenol contaminated wastewater for lipid production by Rhodosporidium toruloides 9564(T). Chemosphere. 2022 Dec;308(Pt 2):136269. doi: 10.1016/j.chemosphere.2022.136269. Epub 2022 Aug 31. [PubMed:36057352 ]
  3. Zhao N, Elshareef H, Li B, Wang B, Jia Z, Zhou L, Liu Y, Sultan M, Dong R, Zhou Y: The efforts of China to combat air pollution during the period of 2015-2018: A case study assessing the environmental, health and economic benefits in the Beijing-Tianjin-Hebei and surrounding "2 + 26" regions. Sci Total Environ. 2022 Aug 31;853:158437. doi: 10.1016/j.scitotenv.2022.158437. [PubMed:36057303 ]
  4. Tan M, Sun Y, Gui J, Wang J, Chen X, Song W, Wu D: Distribution characteristics of microplastics in typical organic solid wastes and their biologically treated products. Sci Total Environ. 2022 Dec 15;852:158440. doi: 10.1016/j.scitotenv.2022.158440. Epub 2022 Aug 31. [PubMed:36057301 ]
  5. Balafif F, Faris M, Subagio EA, Bajamal AH, Kusumadewi A: Lumbar disc herniation in a 15-year-old girl: A case report. Int J Surg Case Rep. 2022 Sep;98:107560. doi: 10.1016/j.ijscr.2022.107560. Epub 2022 Aug 27. [PubMed:36057249 ]
  6. Watanabe M, Kato H, Katayama D, Soeda F, Matsunaga K, Watabe T, Tatsumi M, Shimosegawa E, Tomiyama N: Semiquantitative analysis using whole-body dynamic F-18 fluoro-2-deoxy-glucose-positron emission tomography to differentiate between benign and malignant lesions. Ann Nucl Med. 2022 Nov;36(11):951-963. doi: 10.1007/s12149-022-01784-y. Epub 2022 Sep 3. [PubMed:36057012 ]
  7. Lou J, Xu J, Zhang Y, Sun Y, Fang A, Liu J, Mur LAJ, Ji B: PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images. Comput Methods Programs Biomed. 2022 Oct;225:107095. doi: 10.1016/j.cmpb.2022.107095. Epub 2022 Aug 28. [PubMed:36057226 ]
  8. Mosavi AH, Mohammadzadeh A, Rathinasamy S, Zhang C, Reuter U, Levente K, Adeli H: Deep learning fuzzy immersion and invariance control for type-I diabetes. Comput Biol Med. 2022 Oct;149:105975. doi: 10.1016/j.compbiomed.2022.105975. Epub 2022 Aug 17. [PubMed:36057197 ]
  9. Zheng KL, Bor WL, Vernooij LM, Breet NC, Kelder JC, Hackeng CM, Kropman RHJ, Ten Berg JM, Noordzij PG: Postoperative myocardial injury and platelet reactivity in patients undergoing vascular surgery: The platelet reactivity and postoperative myocardial injury after major vascular surgery (PROMISE) study. Thromb Res. 2022 Oct;218:177-185. doi: 10.1016/j.thromres.2022.08.023. Epub 2022 Aug 28. [PubMed:36057168 ]
  10. Tadesse BT, Zhao G, Kempen P, Solem C: Consolidated Bioprocessing in a Dairy Setting horizontal line Concurrent Yoghurt Fermentation and Lactose Hydrolysis without Using Lactase Enzymes. J Agric Food Chem. 2022 Sep 21;70(37):11623-11630. doi: 10.1021/acs.jafc.2c04191. Epub 2022 Sep 3. [PubMed:36057098 ]
  11. Koretsky MJ, Brovman EY, Urman RD, Tsai MH, Cheney N: A machine learning approach to predicting early and late postoperative reintubation. J Clin Monit Comput. 2023 Apr;37(2):501-508. doi: 10.1007/s10877-022-00908-z. Epub 2022 Sep 3. [PubMed:36057069 ]
  12. V K, Natarajan KS: Gravimetric weight loss of steel in self-compacting concrete blended with wood ash and silica fume. Environ Sci Pollut Res Int. 2023 Jan;30(4):9483-9495. doi: 10.1007/s11356-022-22780-9. Epub 2022 Sep 3. [PubMed:36057061 ]
  13. Rahimian G, Shahini Shams Abadi M, Mirzaei Y, Hussein Mer A, Ahmadi R, Azadegan-Dehkordi F: Relationship between mucosal TNF-alpha expression and Th1, Th17, Th22 and Treg responses in Helicobacter pylori infection. AMB Express. 2022 Sep 3;12(1):113. doi: 10.1186/s13568-022-01456-0. [PubMed:36057049 ]
  14. Simoens C, Philippaert K, Wuyts C, Goscinny S, Van Hoeck E, Van Loco J, Billen J, de Hoon J, Ampe E, Vangoitsenhoven R, Mertens A, Vennekens R, Van der Schueren B: Pharmacokinetics of Oral Rebaudioside A in Patients with Type 2 Diabetes Mellitus and Its Effects on Glucose Homeostasis: A Placebo-Controlled Crossover Trial. Eur J Drug Metab Pharmacokinet. 2022 Nov;47(6):827-839. doi: 10.1007/s13318-022-00792-7. Epub 2022 Sep 3. [PubMed:36057030 ]
  15. Kim SA, Jong YC, Kang MS, Yu CJ: Antioxidation activity of molecular hydrogen via protoheme catalysis in vivo: an insight from ab initio calculations. J Mol Model. 2022 Sep 3;28(10):287. doi: 10.1007/s00894-022-05264-y. [PubMed:36057001 ]
  16. LOTUS database [Link]