Np mrd loader

Record Information
Version1.0
Created at2021-06-19 21:58:18 UTC
Updated at2021-06-29 23:58:48 UTC
NP-MRD IDNP0030682
Secondary Accession NumbersNone
Natural Product Identification
Common Name (+-)-3',3''-bisdemethylpinoresinol
Provided ByJEOL DatabaseJEOL Logo
Description(+)-Sesamin dicatechol is also known as SC-2 (+)-sesamin dicatechol is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. (+-)-3',3''-bisdemethylpinoresinol is found in Joannesia princeps and Morinda citrifolia. It was first documented in 2003 (PMID: 12617602). Based on a literature review a small amount of articles have been published on (+)-sesamin dicatechol (PMID: 24224843) (PMID: 16597711) (PMID: 27444012) (PMID: 31911267).
Structure
Thumb
Synonyms
ValueSource
SC-2ChEBI
Chemical FormulaC18H18O6
Average Mass330.3360 Da
Monoisotopic Mass330.11034 Da
IUPAC Name4-[(1S,3aR,4S,6aR)-4-(3,4-dihydroxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]benzene-1,2-diol
Traditional Name4-[(1S,3aR,4S,6aR)-4-(3,4-dihydroxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]benzene-1,2-diol
CAS Registry NumberNot Available
SMILES
[H]OC1=C(O[H])C([H])=C(C([H])=C1[H])[C@@]1([H])OC([H])([H])[C@]2([H])[C@]([H])(OC([H])([H])[C@]12[H])C1=C([H])C(O[H])=C(O[H])C([H])=C1[H]
InChI Identifier
InChI=1S/C18H18O6/c19-13-3-1-9(5-15(13)21)17-11-7-24-18(12(11)8-23-17)10-2-4-14(20)16(22)6-10/h1-6,11-12,17-22H,7-8H2/t11-,12-,17+,18+/m0/s1
InChI KeyOQSOTSIYXPYTRE-YDOWWZDFSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 360 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 360 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 400 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Joannesia princepsJEOL database
    • Waibel, R., et al., Phytochemistry 62, 805 (2003)
Morinda citrifoliaLOTUS Database
Chemical Taxonomy
ClassificationNot classified
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP1.81ALOGPS
logP1.99ChemAxon
logS-3.6ALOGPS
pKa (Strongest Acidic)8.91ChemAxon
pKa (Strongest Basic)-3.9ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area99.38 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity86.14 m³·mol⁻¹ChemAxon
Polarizability33.96 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID24674520
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI ID136543
Good Scents IDNot Available
References
General References
  1. Nguyen PH, Yang JL, Uddin MN, Park SL, Lim SI, Jung DW, Williams DR, Oh WK: Protein tyrosine phosphatase 1B (PTP1B) inhibitors from Morinda citrifolia (Noni) and their insulin mimetic activity. J Nat Prod. 2013 Nov 22;76(11):2080-7. doi: 10.1021/np400533h. Epub 2013 Nov 13. [PubMed:24224843 ]
  2. Nakai M, Harada M, Nakahara K, Akimoto K, Shibata H, Miki W, Kiso Y: Novel antioxidative metabolites in rat liver with ingested sesamin. J Agric Food Chem. 2003 Mar 12;51(6):1666-70. doi: 10.1021/jf0258961. [PubMed:12617602 ]
  3. Nakano D, Kwak CJ, Fujii K, Ikemura K, Satake A, Ohkita M, Takaoka M, Ono Y, Nakai M, Tomimori N, Kiso Y, Matsumura Y: Sesamin metabolites induce an endothelial nitric oxide-dependent vasorelaxation through their antioxidative property-independent mechanisms: possible involvement of the metabolites in the antihypertensive effect of sesamin. J Pharmacol Exp Ther. 2006 Jul;318(1):328-35. doi: 10.1124/jpet.105.100149. Epub 2006 Apr 5. [PubMed:16597711 ]
  4. Kumano T, Fujiki E, Hashimoto Y, Kobayashi M: Discovery of a sesamin-metabolizing microorganism and a new enzyme. Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):9087-92. doi: 10.1073/pnas.1605050113. Epub 2016 Jul 21. [PubMed:27444012 ]
  5. Chen G, Zhao W, Li Y, Zhou D, Ding J, Lin B, Li W, Yang Y, Liu J, Hou Y, Li N: Bioactive chemical constituents from the seed testa of Vernicia fordii as potential neuroinflammatory inhibitors. Phytochemistry. 2020 Mar;171:112233. doi: 10.1016/j.phytochem.2019.112233. Epub 2020 Jan 3. [PubMed:31911267 ]
  6. Waibel, R., et al. (2003). Waibel, R., et al., Phytochemistry 62, 805 (2003). Phytochem..