Np mrd loader

Record Information
Version1.0
Created at2021-06-19 17:46:19 UTC
Updated at2021-06-29 23:50:50 UTC
NP-MRD IDNP0025721
Secondary Accession NumbersNone
Natural Product Identification
Common NameOleuropein
Provided ByJEOL DatabaseJEOL Logo
Description Oleuropein is found in Borago officinalis, Brassica napus, Fraxinus angustifolia, Fraxinus excelsior, Fraxinus insularis, Fraxinus pallisae, Inga velutina, Jasminum grandiflorum , Jasminum officinale , Jasminum polyanthum, Ligustrum japonicum, Ligustrum lucidum, Ligustrum vulgare, Olea capensis, Osmanthus fortunei, Osmanthus fragrans, Osmanthus heterophyllus, Syringa josikaea, Syringa persica, Syringa pubescens, Syringa reticulata and Syringa vulgaris. It was first documented in 2021 (PMID: 34370148). Based on a literature review very few articles have been published on methyl (2S,4S)-4-{2-[2-(3,4-dihydroxyphenyl)ethoxy]-2-oxoethyl}-3-ethylidene-2-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2H-pyran-5-carboxylate (PMID: 34366460) (PMID: 34356385) (PMID: 34356366) (PMID: 34338174) (PMID: 34305155) (PMID: 34296655).
Structure
Thumb
Synonyms
ValueSource
Methyl (2S,4S)-4-{2-[2-(3,4-dihydroxyphenyl)ethoxy]-2-oxoethyl}-3-ethylidene-2-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2H-pyran-5-carboxylic acidGenerator
OleuropeinMeSH
Chemical FormulaC25H32O13
Average Mass540.5138 Da
Monoisotopic Mass540.18429 Da
IUPAC Namemethyl (2S,3Z,4S)-4-{2-[2-(3,4-dihydroxyphenyl)ethoxy]-2-oxoethyl}-3-ethylidene-2-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2H-pyran-5-carboxylate
Traditional Namemethyl (4S,5Z,6S)-4-{2-[2-(3,4-dihydroxyphenyl)ethoxy]-2-oxoethyl}-5-ethylidene-6-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,6-dihydropyran-3-carboxylate
CAS Registry NumberNot Available
SMILES
[H]OC1=C(O[H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])OC(=O)C([H])([H])[C@]1([H])C(=C([H])O[C@@]([H])(O[C@]2([H])O[C@]([H])(C([H])([H])O[H])[C@@]([H])(O[H])[C@]([H])(O[H])[C@@]2([H])O[H])\C1=C(\[H])C([H])([H])[H])C(=O)OC([H])([H])[H]
InChI Identifier
InChI=1S/C25H32O13/c1-3-13-14(9-19(29)35-7-6-12-4-5-16(27)17(28)8-12)15(23(33)34-2)11-36-24(13)38-25-22(32)21(31)20(30)18(10-26)37-25/h3-5,8,11,14,18,20-22,24-28,30-32H,6-7,9-10H2,1-2H3/b13-3-/t14-,18+,20+,21-,22+,24-,25-/m0/s1
InChI KeyRFWGABANNQMHMZ-WLFYAOHHSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 400 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 50 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 150 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 250 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 175 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 75 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 225 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 125 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 25 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, Methanol-d4, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Borago officinalisLOTUS Database
Brassica napusLOTUS Database
Brassica napus var. napusFooDB
Fraxinus americanaKNApSAcK Database
Fraxinus angustifoliaLOTUS Database
Fraxinus chinensisKNApSAcK Database
Fraxinus excelsiorLOTUS Database
Fraxinus excelsior L.KNApSAcK Database
Fraxinus insularisLOTUS Database
Fraxinus japonicaKNApSAcK Database
Fraxinus ornusKNApSAcK Database
Fraxinus oxycarbaKNApSAcK Database
Fraxinus pallisaeLOTUS Database
Inga velutinaLOTUS Database
Jasminum grandiflorumPlant
Jasminum officinalePlant
Jasminum polyanthumLOTUS Database
Ligusticum lucidumKNApSAcK Database
Ligustrum japonicumLOTUS Database
Ligustrum japonicum L.KNApSAcK Database
Ligustrum lucidumJEOL database
    • He, Z.-D., et al, Chem. Pharm. Bull. 49, 780 (2001)
Ligustrum obtusifoliumKNApSAcK Database
Ligustrum vulgareLOTUS Database
Olea capensisLOTUS Database
Olea europaeaKNApSAcK Database
Osmanthus fortuneiLOTUS Database
Osmanthus fragransLOTUS Database
Osmanthus heterophyllusLOTUS Database
Syringa afghanicaKNApSAcK Database
Syringa josikaeaLOTUS Database
Syringa persicaLOTUS Database
Syringa pubescens Turcz.LOTUS Database
Syringa reticulataLOTUS Database
Syringa vulgarisLOTUS Database
Syringa vulgaris L.KNApSAcK Database
Chemical Taxonomy
DescriptionThis compound belongs to the class of organic compounds known as terpene glycosides. These are prenol lipids containing a carbohydrate moiety glycosidically bound to a terpene backbone.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassTerpene glycosides
Direct ParentTerpene glycosides
Alternative Parents
Substituents
  • Terpene glycoside
  • Glycosyl compound
  • Secoiridoid-skeleton
  • O-glycosyl compound
  • Aromatic monoterpenoid
  • Monocyclic monoterpenoid
  • Monoterpenoid
  • Tyrosol derivative
  • Catechol
  • 1-hydroxy-4-unsubstituted benzenoid
  • 1-hydroxy-2-unsubstituted benzenoid
  • Phenol
  • Sugar acid
  • Monocyclic benzene moiety
  • Dicarboxylic acid or derivatives
  • Monosaccharide
  • Benzenoid
  • Oxane
  • Alpha,beta-unsaturated carboxylic ester
  • Methyl ester
  • Enoate ester
  • Vinylogous ester
  • Secondary alcohol
  • Carboxylic acid ester
  • Acetal
  • Organoheterocyclic compound
  • Oxacycle
  • Polyol
  • Carboxylic acid derivative
  • Organooxygen compound
  • Organic oxide
  • Alcohol
  • Carbonyl group
  • Hydrocarbon derivative
  • Primary alcohol
  • Organic oxygen compound
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP0.63ALOGPS
logP0.11ChemAxon
logS-2.9ALOGPS
pKa (Strongest Acidic)9.28ChemAxon
pKa (Strongest Basic)-3ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count11ChemAxon
Hydrogen Donor Count6ChemAxon
Polar Surface Area201.67 ŲChemAxon
Rotatable Bond Count11ChemAxon
Refractivity128.22 m³·mol⁻¹ChemAxon
Polarizability53.39 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
HMDB IDHMDB0035872
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDFDB014653
KNApSAcK IDNot Available
Chemspider ID30777146
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound6325757
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Rokni Y, Abouloifa H, Bellaouchi R, Hasnaoui I, Gaamouche S, Lamzira Z, Salah RBEN, Saalaoui E, Ghabbour N, Asehraou A: Characterization of beta-glucosidase of Lactobacillus plantarum FSO1 and Candida pelliculosa L18 isolated from traditional fermented green olive. J Genet Eng Biotechnol. 2021 Aug 9;19(1):117. doi: 10.1186/s43141-021-00213-3. [PubMed:34370148 ]
  2. Katouzian I, Taheri RA: Preparation, characterization and release behavior of chitosan-coated nanoliposomes (chitosomes) containing olive leaf extract optimized by response surface methodology. J Food Sci Technol. 2021 Sep;58(9):3430-3443. doi: 10.1007/s13197-021-04972-2. Epub 2021 Jan 25. [PubMed:34366460 ]
  3. Katsinas N, Rodriguez-Rojo S, Enriquez-de-Salamanca A: Olive Pomace Phenolic Compounds and Extracts Can Inhibit Inflammatory- and Oxidative-Related Diseases of Human Ocular Surface Epithelium. Antioxidants (Basel). 2021 Jul 20;10(7). pii: antiox10071150. doi: 10.3390/antiox10071150. [PubMed:34356385 ]
  4. Lammi C, Bartolomei M, Bollati C, Cecchi L, Bellumori M, Sabato E, Giulio V, Mulinacci N, Arnoldi A: Phenolic Extracts from Extra Virgin Olive Oils Inhibit Dipeptidyl Peptidase IV Activity: In Vitro, Cellular, and In Silico Molecular Modeling Investigations. Antioxidants (Basel). 2021 Jul 16;10(7). pii: antiox10071133. doi: 10.3390/antiox10071133. [PubMed:34356366 ]
  5. Sain A, Sahu S, Naskar D: Potential of Olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: A comprehensive review. Br J Nutr. 2021 Aug 2:1-50. doi: 10.1017/S0007114521002919. [PubMed:34338174 ]
  6. Pitsillou E, Liang J, Yu Meng Huang H, Hung A, Karagiannis TC: In silico investigation to identify potential small molecule inhibitors of the RNA-dependent RNA polymerase (RdRp) nidovirus RdRp-associated nucleotidyltransferase domain. Chem Phys Lett. 2021 Sep 16;779:138889. doi: 10.1016/j.cplett.2021.138889. Epub 2021 Jul 12. [PubMed:34305155 ]
  7. Sain A, Kandasamy T, Naskar D: In silico approach to target PI3K/Akt/mTOR axis by selected Olea europaea phenols in PIK3CA mutant colorectal cancer. J Biomol Struct Dyn. 2021 Jul 23:1-16. doi: 10.1080/07391102.2021.1953603. [PubMed:34296655 ]
  8. Leri M, Bertolini A, Stefani M, Bucciantini M: EVOO Polyphenols Relieve Synergistically Autophagy Dysregulation in a Cellular Model of Alzheimer's Disease. Int J Mol Sci. 2021 Jul 5;22(13). pii: ijms22137225. doi: 10.3390/ijms22137225. [PubMed:34281279 ]
  9. Liao X, Hong Y, Chen Z: Identification and quantification of the bioactive components in Osmanthus fragrans roots by HPLC-MS/MS. J Pharm Anal. 2021 Jun;11(3):299-307. doi: 10.1016/j.jpha.2020.06.010. Epub 2020 Jul 5. [PubMed:34277118 ]
  10. Manzano-Nicolas J, Taboada-Rodriguez A, Teruel-Puche JA, Marin-Iniesta F, Garcia-Molina F, Garcia-Canovas F, Tudela-Serrano J, Munoz-Munoz J: Enzymatic oxidation of oleuropein and 3-hydroxytyrosol by laccase, peroxidase, and tyrosinase. J Food Biochem. 2021 Jul 4:e13803. doi: 10.1111/jfbc.13803. [PubMed:34219246 ]
  11. Zheng S, Wang Y, Fang J, Geng R, Li M, Zhao Y, Kang SG, Huang K, Tong T: Oleuropein Ameliorates Advanced Stage of Type 2 Diabetes in db/db Mice by Regulating Gut Microbiota. Nutrients. 2021 Jun 22;13(7). pii: nu13072131. doi: 10.3390/nu13072131. [PubMed:34206641 ]
  12. Maiuolo J, Bava I, Carresi C, Gliozzi M, Musolino V, Scarano F, Nucera S, Scicchitano M, Bosco F, Ruga S, Caterina Zito M, Oppedisano F, Macri R, Tavernese A, Mollace R, Mollace V: The Effects of Bergamot Polyphenolic Fraction, Cynara cardunculus, and Olea europea L. Extract on Doxorubicin-Induced Cardiotoxicity. Nutrients. 2021 Jun 23;13(7). pii: nu13072158. doi: 10.3390/nu13072158. [PubMed:34201904 ]
  13. Carrara M, Kelly MT, Roso F, Larroque M, Margout D: Potential of Olive Oil Mill Wastewater as a Source of Polyphenols for the Treatment of Skin Disorders: A Review. J Agric Food Chem. 2021 Jul 7;69(26):7268-7284. doi: 10.1021/acs.jafc.1c00296. Epub 2021 Jun 28. [PubMed:34180235 ]
  14. Malliou F, Andriopoulou CE, Gonzalez FJ, Kofinas A, Skaltsounis AL, Konstandi M: Oleuropein-Induced Acceleration of Cytochrome P450-Catalyzed Drug Metabolism: Central Role for Nuclear Receptor Peroxisome Proliferator-Activated Receptor alpha. Drug Metab Dispos. 2021 Sep;49(9):833-843. doi: 10.1124/dmd.120.000302. Epub 2021 Jun 23. [PubMed:34162688 ]
  15. Karagiannis E, Michailidis M, Skodra C, Stamatakis G, Dasenaki M, Ganopoulos I, Samiotaki M, Thomaidis NS, Molassiotis A, Tanou G: Proteo-metabolomic journey across olive drupe development and maturation. Food Chem. 2021 Nov 30;363:130339. doi: 10.1016/j.foodchem.2021.130339. Epub 2021 Jun 9. [PubMed:34147896 ]
  16. He, Z.-D., et al. (2001). He, Z.-D., et al, Chem. Pharm. Bull. 49, 780 (2001). Chem. Pharm. Bull..