Np mrd loader

Record Information
Version1.0
Created at2021-06-19 17:45:00 UTC
Updated at2021-06-29 23:50:47 UTC
NP-MRD IDNP0025690
Secondary Accession NumbersNone
Natural Product Identification
Common NameProanthocyanidin A-6
Provided ByJEOL DatabaseJEOL Logo
DescriptionProanthocyanidin A-6 belongs to the class of organic compounds known as biflavonoids and polyflavonoids. These are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3'-C3''', and C6-C8''. Proanthocyanidin A-6 is found in Aesculus hippocastanum , Parameria laevigata MOLDENKE and Parameria laevigata MOLDENKE . It was first documented in 2014 (PMID: 25356846). Proanthocyanidin A-6 is a moderately basic compound (based on its pKa) (PMID: 30043588) (PMID: 29716563) (PMID: 26051626) (PMID: 25911741).
Structure
Thumb
SynonymsNot Available
Chemical FormulaC30H24O12
Average Mass576.5100 Da
Monoisotopic Mass576.12678 Da
IUPAC Name(1R,6R,7R,13S,21R)-7,13-bis(3,4-dihydroxyphenyl)-8,12,14-trioxapentacyclo[11.7.1.0^{2,11}.0^{4,9}.0^{15,20}]henicosa-2,4(9),10,15,17,19-hexaene-3,6,17,19,21-pentol
Traditional Name(1R,6R,7R,13S,21R)-7,13-bis(3,4-dihydroxyphenyl)-8,12,14-trioxapentacyclo[11.7.1.0^{2,11}.0^{4,9}.0^{15,20}]henicosa-2,4(9),10,15,17,19-hexaene-3,6,17,19,21-pentol
CAS Registry NumberNot Available
SMILES
[H]OC1=C([H])C(O[H])=C2C(O[C@]3(OC4=C([H])C5=C(C(O[H])=C4[C@]2([H])[C@@]3([H])O[H])C([H])([H])[C@@]([H])(O[H])[C@]([H])(O5)C2=C([H])C(O[H])=C(O[H])C([H])=C2[H])C2=C([H])C([H])=C(O[H])C(O[H])=C2[H])=C1[H]
InChI Identifier
InChI=1S/C30H24O12/c31-13-7-19(36)24-22(8-13)41-30(12-2-4-16(33)18(35)6-12)29(39)26(24)25-23(42-30)10-21-14(27(25)38)9-20(37)28(40-21)11-1-3-15(32)17(34)5-11/h1-8,10,20,26,28-29,31-39H,9H2/t20-,26-,28-,29-,30+/m1/s1
InChI KeyBEPYKTSNKZMROV-FEEPWOQDSA-N
Experimental Spectra
Spectrum TypeDescriptionDepositor EmailDepositor OrganizationDepositorDeposition DateView
1D NMR13C NMR Spectrum (1D, 400 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 400 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 100 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 100 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 200 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 200 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 300 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 300 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 500 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 500 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 600 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 600 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 700 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 700 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 800 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 800 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 900 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 900 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR13C NMR Spectrum (1D, 1000 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
1D NMR1H NMR Spectrum (1D, 1000 MHz, CD3OD, simulated)Wishart LabWishart LabDavid Wishart2021-06-20View Spectrum
Predicted Spectra
Not Available
Chemical Shift Submissions
Not Available
Species
Species of Origin
Species NameSourceReference
Aesculus hippocastanumPlant
Parameria laevigataJEOL database
    • Kamiya, K., et al, Chem. Pharm. Bull. 49, 551 (2001)
Parameria laevigata MOLDENKEPlant
Chemical Taxonomy
Description Belongs to the class of organic compounds known as biflavonoids and polyflavonoids. These are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3'-C3''', and C6-C8''.
KingdomOrganic compounds
Super ClassPhenylpropanoids and polyketides
ClassFlavonoids
Sub ClassBiflavonoids and polyflavonoids
Direct ParentBiflavonoids and polyflavonoids
Alternative Parents
Substituents
  • A-type proanthocyanidin
  • Bi- and polyflavonoid skeleton
  • Proanthocyanidin
  • Catechin
  • Pyranoflavonoid
  • Flavan-3-ol
  • Hydroxyflavonoid
  • 3'-hydroxyflavonoid
  • 7-hydroxyflavonoid
  • 5-hydroxyflavonoid
  • 4'-hydroxyflavonoid
  • 3-hydroxyflavonoid
  • Flavan
  • Pyranochromene
  • Chromane
  • 1-benzopyran
  • Benzopyran
  • Catechol
  • Alkyl aryl ether
  • 1-hydroxy-2-unsubstituted benzenoid
  • Phenol
  • Ketal
  • 1-hydroxy-4-unsubstituted benzenoid
  • Benzenoid
  • Monocyclic benzene moiety
  • Secondary alcohol
  • Polyol
  • Acetal
  • Organoheterocyclic compound
  • Oxacycle
  • Ether
  • Hydrocarbon derivative
  • Alcohol
  • Organic oxygen compound
  • Organooxygen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Physical Properties
StateNot Available
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
logP2.46ALOGPS
logP3.59ChemAxon
logS-3.7ALOGPS
pKa (Strongest Acidic)8.67ChemAxon
pKa (Strongest Basic)-3.9ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count12ChemAxon
Hydrogen Donor Count9ChemAxon
Polar Surface Area209.76 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity144.2 m³·mol⁻¹ChemAxon
Polarizability57.92 ųChemAxon
Number of Rings7ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
HMDB IDNot Available
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID22913199
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound45359583
PDB IDNot Available
ChEBI IDNot Available
Good Scents IDNot Available
References
General References
  1. Autieri G, Mussano F, Petruzzi M, Carossa M, Genova T, Corsalini M, Carossa S: Proanthocyanidin may improve the shear bond strength at the composites/dentine interface. J Biol Regul Homeost Agents. 2018 Jul-Aug;32(4):1021-1025. [PubMed:30043588 ]
  2. Asma B, Vicky L, Stephanie D, Yves D, Amy H, Sylvie D: Standardised high dose versus low dose cranberry Proanthocyanidin extracts for the prevention of recurrent urinary tract infection in healthy women [PACCANN]: a double blind randomised controlled trial protocol. BMC Urol. 2018 May 2;18(1):29. doi: 10.1186/s12894-018-0342-7. [PubMed:29716563 ]
  3. Ribas-Latre A, Baselga-Escudero L, Casanova E, Arola-Arnal A, Salvado MJ, Blade C, Arola L: Dietary proanthocyanidins modulate BMAL1 acetylation, Nampt expression and NAD levels in rat liver. Sci Rep. 2015 Jun 8;5:10954. doi: 10.1038/srep10954. [PubMed:26051626 ]
  4. Zhu Z, Wang H, Wang Y, Guan S, Wang F, Tang J, Zhang R, Xie L, Lu Y: Characterization of the cis elements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation. J Exp Bot. 2015 Jul;66(13):3775-89. doi: 10.1093/jxb/erv173. Epub 2015 Apr 23. [PubMed:25911741 ]
  5. Bindon K, Kassara S, Hayasaka Y, Schulkin A, Smith P: Properties of wine polymeric pigments formed from anthocyanin and tannins differing in size distribution and subunit composition. J Agric Food Chem. 2014 Nov 26;62(47):11582-93. doi: 10.1021/jf503922h. Epub 2014 Nov 17. [PubMed:25356846 ]
  6. Kamiya, K., et al. (2001). Kamiya, K., et al, Chem. Pharm. Bull. 49, 551 (2001). Chem. Pharm. Bull..